
Compatibility via Modernizr
Making web things fit their medium

by /

#McrFRED | 27th June 2013 | Manchester, UK

Stu Cox @stucoxmedia

http://www.stucox.com/
http://twitter.com/stucoxmedia

In this case:

Your web thing ←→ Your user's browser/device

com•pat•i•bil•i•ty |kәmˌpatɪˈbɪlɪti| (abbr.: compat.)
noun (pl. -i•ties)
a state in which two things are able to exist or occur together without problems or conflict.

How we did it back in the day

1. Make a

2. Test it in Browser A

3. It works! Hurray!

web thing

http://adactio.com/journal/6246/

4. Test it in Browser B

5. Doesn't work :-(

So we hack it.
CSS hacks:

User-Agent sniffs:

These are essentially heuristics.

.btn {
 *margin-left: -13px;
}

if (navigator.userAgent.match(/MSIE [67]\./)) {
 // Fix for old IE
}

Heuristics imply assumptions.
"All browsers which parse CSS hack A also have layout bug B"
"All browsers which match user-agent C support feature D"
"I know about every browser my users might use"
"If my assumptions are true now, they'll also be true in the future"

"I know about every browser my users might use"
85 browser versions with > 0.1% market share

7,000 different devices login to Facebook every day [1]

Users have different needs (think accessibility)

[1] techcrunch.com/2012/08/03/vp-mike-schroepfer-7000-different-mobile-devices-access-facebook-every-day/

http://techcrunch.com/2012/08/03/vp-mike-schroepfer-7000-different-mobile-devices-access-facebook-every-day/

Browser A

Browser B

Three sources of compatibility problems:

Features

Plugins

Bugs

Features
CSS:
@font-face, transitions, animations, flexbox, ...

HTML:
<audio>, <video>, input types, drag & drop, ...

JavaScript:
History API, IndexedDB, WebSockets, ...

...

Plugins
Platforms/Runtimes:
Flash, Silverlight, Java, ...

Viewers:
PDF, Office documents, ...

...

Bugs
Rendering:
Box model, double margin, ...

Other broken things:
History API in Android 2.x, ...

...

These can all be described under one term:

CAPABILITIES

Features are capabilities
"Browser X has the ability to render SVG"

Plugins add capabilities
"A browser with the Flash plugin has the ability to render Flash media"

Bugs are incapabilities
"Browser Y has the ability NOT to fuck up the box model"

“The differences between 2 users' browsers can
be described (entirely) by the differences

between their capability sets.”

Progressive Enhancement

It was going to get mentioned sooner or later.

Providing different experiences for different users, depending on their
capabilities.

Think of your web thing as a collection of features.

Core: the essential bits every user needs

Enhancements: non-essential additions

The core is smaller than you think.

Each feature depends on capabilities of the
browser.

Core capabilities → "system requirements" for your web thing
Fewer core capabilities = accessible to more users.

Enhancement capabilities → tiers of experience
If a user has the required capabilities, they get the enhancement; otherwise they don't.

What's an enhancement?
Examples:

Some styling
Fonts
Animations
Audio / video content
A background image
A whole functional part – e.g. a chat feature

Atomic Enhancements
Either applied fully, or not at all
No side effects when required capabilities aren't present
Degrades gracefully

If enhancements aren't atomic, bad things happen.
Broken layouts
Javascript errors
Unusable interfaces

Examples:

If box-sizing not supported, layout won't be as expected.

TypeError: Object #<HTMLDocument> has no method 'querySelectorAll'

.module {
 box-sizing: border-box;
 padding: 1em;
 width: 20em;
}

// My module
var modules = document.querySelectorAll('.module');
...

How can we ensure enhancements are atomic?
1. Avoid certain dependencies

2. Safety net

3. Feature detect

Feature detection
Testing if the browser offers certain capabilities

Basic pattern
if (supportsFeature) {
 // Use feature!
 // Ensure all code depending on this feature is
 // contained here... no side effects!
}
else {
 // Some fallback (optional)
}

Techniques
1. Does it exist?

2. Does it stick?

3. Does it work?

'geolocation' in navigator

var el = createElement('div');
el.style.cssText = 'filter:blur(2px)';
!!el.style.length // true if CSS filters supported

var image = new Image();
image.onload = function() {
 image.width == 1 // true if WebP supported
}
image.src = '...'

Media Queries
Yep, they're a kind of feature detection too.

In CSS:

In JS:

@media (min-width: 800px) {
 // Has a large viewport
}

@media not (min-width: 800px) {
 // Doesn't have a large viewport
}

if (window.matchMedia('(min-width: 800px)').matches) {
 // Has a large viewport
}
else {
 // Doesn't have a large viewport
}

Native Detection
Via @supports

In CSS:

In JS:

@supports (display: flex) {
 // Supports flexbox
}

@supports not (display: flex) {
 // Doesn't support flexbox
}

if (window.CSS.supports('display', 'flex') {
 // Supports flexbox
}
else {
 // Doesn't support flexbox
}

Fallbacks

No fallback: "feature gating"
Efficient, easy to maintain.

Replace functionality: "polyfilling"
Can be network and processor intensive, rarely an exact match

Alternative functionality: "sandwich filling"
Usually unnecessary…

It's a feature detection library.
Detects for 174+ modern browser capabilities.

http://modernizr.com

http://modernizr.com/

Basic patterns
It makes feature detection a breeze

if (Modernizr.geolocation) {
 // Use feature!
 // Ensure all code depending on this feature is
 // contained here... no side effects!
}
else {
 // Some fallback (optional)
}

.geolocation .module {
 /* Styles if geolocation supported */
}
.no-geolocation .module {
 /* Styles if geolocation not supported */
}

Custom builds
All killer, no filler

http://modernizr.com/download

Roll your own
Via Modernizr.addTest()

Modernizr.addTest('yoda', function () {
 var yoda = document.createElement('yoda');
 return 'theforce' in yoda;
});

Conditional Loading
Via Modernizr.load()

Avoid heavy loading for browsers which can't use it

Rarely need nope – big polyfills are a bad idea!

Modernizr.load({
 test: Modernizr.geolocation,
 yep: 'geo.js',
 nope: 'geo-polyfill.js'
});

Modernizr v3.0
New AMD-based internal architecture
Builds are waaaaay smaller
20+ more detects since 2.6.2
Better handling of async tests
Uses @supports under the hood
Faster release cycle
Better documentation
Easier integration with

Coming soon, we promise!

See:

grunt-modernizr

Alex Sexton's Modernizr 3 Workflow

https://github.com/doctyper/grunt-modernizr
http://alexsexton.com/talks/modernizr-3-workflow/

Now I'm going to talk a bit about my involvement in Modernizr.

Undetectables
Unfortunately some things fall under our radar

A good feature detect...

Gives accurate positives

Gives accurate negatives

Is lightweight (fast & small)

Doesn't make assumptions or use heuristics

Realistically, most detects make some assumptions – we try to minimise these

Rule 1: It must interact with the document
Because that's all we can access from JS.

Styling
Can't access the pixels on the screen
Best-guess based on the (re)actions of the DOM

Form UIs
Appear on top of the document – invisible to us

Rule 2: It shouldn't take any user interaction
Events
Can't tell if events (e.g. DOMContentLoaded) will be fired at the correct time

contenteditable

We can often give accurate negatives, but not positives

Rule 3: Think about older browsers/devices
Using new APIs
e.g. window.performance – tells us nothing about older devices

Touchscreens
Don't get me started...

You can't detect a touchscreen
Not reliably, anyway

All techniques either use heuristics or rely on new APIs.

http://stucox.com/blog/you-cant-detect-a-touchscreen/

http://stucox.com/blog/you-cant-detect-a-touchscreen/

In fact, you can't detect many device features
Not reliably, anyway

Think about the assumptions you're making

Now I'm going to talk a bit about some hand-wavey idealistic stuff.

Managing compatibility

Variation between platforms is the web: embrace it.
Consider it from the start of your project.

Idea: modular capability dependencies

RequireJS-like syntax for defining browser dependencies

browserRequire(['svg', 'canvas'], function () {

 // Only runs if capabilities available

});

Even better: a RequireJS plugin

require(['jquery', 'M!svg', 'M!canvas'], function ($) {

 // Only runs if software AND capability dependencies
 // satisfied

});

That's all I've got.

 / www.stucox.com @stucoxmedia

http://www.stucox.com/
http://twitter.com/stucoxmedia

